
 

 

 

 

 
 

1. Introduction 

The lifetime distribution provides an advantages and applied 
information to users or practitioners to protect damages of 
medical, finance, manufacturing, systems, industry, and 
machines that occur after the lifetime is terminated. The 
serious injury or death may be happened if the user not know 
the lifetime of their items, machines or systems. 

The well known lifetime distributions in survival analysis 
are Birnbaum–Saunders (BS), Inverse Gaussian (IG), Length 
Biased Inverse Gaussian (LB) and Crack distributions (CR), 
Exponential, Log-Normal, Extreme Value, Weibull.     
    The distribution is widely used to be the lifetime 
distributions in many filed. The distributions had been studied 
for long time. For Inverse Gaussian distribution [1-3], Shuster 
(1968) [4] used the tables of the Standard Normal distribution 
and logarithms to get the exact probabilities for an Inverse 
Gaussian distribution. Chhikara and Folks (1989) [5] provided 
the relationship among Inverse Gaussian distribution and  
and  distributions toapplied with the Sampling Theory. They 
also mentioned that the Inverse Gaussian distribution describes 
the distribution of the time it takes a Brownian motion while 
the normal distribution express the distance traveled at time 
fixed by the standard Brownian motion. Chaubey et al. (2014) 
[6] proved that under the scale transformation, the likelihood 
ratio test for one sided hypotheses in the Inverse Gaussian 
family is the uniformly most powerful invariant test. 
    The length biased in version of the Inverse Gaussian 
distribution was studied in [7] and [8]. Patil and Rao (1977) 
[9] proposed the special weighted distribution of length biased 
in version of the Inverse Gaussian distribution. 
    The Crack distribution was introduced by Jorgensen et al. 
(1991) [10]. Gupta and Akman (1995) [11] studied the 
Bayesian estimation of Crack distribution. Gupta and Akman 
(1995) [12] discussed that the Crack distribution is also known 
as the Inverse Gaussian Mixture distribution. Volodin and 

Dzhungurova (2000) [13] proposed the five-parameter family 
of called General Crack distributions, which including to the 
Inverse Gaussian Mixture distribution, normal distribution, the 
Inverse Gaussian distribution, and the Birnbaum–Saunders 
distribution. Duangsaphon (2014) [14] studied the Crack 
distribution in the regression-quantile estimation, Bayesian 
estimation. And  also do the confidence interval estimation. 
Saengthong and Bodhisuwan (2014) [15] proposed the new 
two parameter Crack distribution by modifying the weighted 
parameter. Ngamkham (2019) [16] study about the three 
parameter Crack distribution and introduce a new algorithm to 
generate the random numbers by the composition method. 
Some relevant studies can be found in [17] and [18]. 
    In this research, we propose a new four parameter family of 
distributions that generalizes the family three parameter Crack 
distribution and investigate the properties including to first 
four moments, parameter estimation by using the maximum 
likelihood estimators and method of moment estimation and 
evaluate the performance of the estimators by using bias. 

The article is organized as follows. We first review the 
probability distribution function (pdf) of IG and LB and 
introduced you to know about Twice Length-Biased Inverse 
Gaussian (LB2) distributions. Theoretical results about 
Generalization Crack distribution (GCR) are given in section 
3. After that, Numerical results are shown in section 4. Finally, 
conclusions and discussion are reported in section 5. 

2. Materials and Methods 

2.1 Inverse Gaussian Distribution 

    The probability distributions with support of  on . 
A random variable  has the Inverse Gaussian distribution, if 
the probability density function is  
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where parameter  is the mean and  is the scale 
parameter of the distribution. We say that the probability 
density function above is the classical parametrization of the 
Inverse Gaussian distribution. 
    For the new parametrization of the Inverse Gaussian 
distribution, which is a two-parameter  family of 
continuous probability distributions with density function as 
follows  

 

 
    The relationship between classical parameters  and new 
parameters  can be written as follows 
 

 

 
    Let random variable  have  distribution. Then we 
get 

              (1)  

2.2 Length-Biased Inverse Gaussian 

Distribution 

    Let  be a non-negative random variable having the 
continuous probability density function  with a finite first 
moment . We say that  with probability density function 

 has the length biased distribution associated with , if its 
probability density function is given by the formula  
 

                               (2) 
From (1) and (2), then we get the Length Biased Inverse 

Gaussian distribution in term of new parametrization is given 
by the following formula  

 
 

We denote this distribution as  with mean . 

2.3 Crack Distribution 

The Crack distribution is constructed by adding the weight 
parameter  and including the two parameter of Inverse 
Gaussian distribution and two parameter of Length Biased 
Inverse Gaussian distribution. The formula is show as follows  

 
 

where  and . The probability density 
function of three-parameter Crack distribution is given by the 
following formula 
 

 

 
where  and . We denote this distribution 
as . 
    The cumulative distribution function of three-parameter 
Crack distribution is 
 

 
 

where  is the standard normal distribution function. 
    The connection of the probability density functions of 
Inverse Gaussian distribution, Length Biased Inverse Gaussian 
distribution, Birnbaum–Saunders distribution with the Crack 
distribution is 

  
where  and . 

2.4 Twice Length-Biased Inverse Gaussian 

Distribution 

Let random variable  have  distribution and  
have  distribution. According to formula (2), a non-
negative random variable  with density function  has the 
length biased distribution associated with , if its density 
function is given by the formula  

 

            
 
    The Twice Length Biased Inverse Gaussian distribution, 
which we consider in this article, is a two-parameter 

 family of continuous probability distributions 
with density function as 

 
We denote this distribution as . 
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3. Generalization Crack Distribution 

3.1 The Probability Distribution Function 

The Generalized CR lifetime distribution depends on four 
parameters. This distribution contains as special cases the four 
well-known aforementioned distributions, namely, the Crack 
distribution, the Birnbaum–Saunders distribution, the Inverse 
Gaussian distribution, and the Length Biased Inverse Gaussian 
distribution. 

The Generalized Crack distribution is formed by adding one 
more weight parameter  in the formila of Crack distribution 
and including the two parameter of Inverse Gaussian 
distribution, two parameter of Length Biased Inverse Gaussian 
distribution and two parameter of Twice Length Biased 
Inverse Gaussian distribution as follows 
 

 
 
Where  and .      
    The probability density function of Generalized Crack 
distribution is given by 
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where  and . 
We denote this distribution as . 
    The relevance of the probability density functions of Crack 
distribution, Inverse Gaussian distribution, Birnbaum–
Saunders distribution, Length Biased Inverse Gaussian 
distribution, Twice Length Biased Inverse Gaussian 
distribution with the Generalized Crack distribution is  
 

 
 
where  and . 
    Note that the connection between Generalized Crack 
distribution, Inverse Gaussian distribution, Length Biased 
Inverse Gaussian distribution and Twice Length Biased 
Inverse Gaussian distribution distributions can be illustrate in 
alternative way.  
    Let ,  and  are independent random variables such 
that  has  distribution,  has  distribution 

and  has  distribution,  and 
.  

    Consider the new random variable  such that  

 

then  follows the  distribution. This is the 
reason why we say that  is a mixture of  and . 

3.2 The First Four Moments 

The moment generating function of  is  
 

 
  

Proof  Let  be a  , , ,GCR p q   distributed random variable; 
then 
 

 

 

 

 

 

23 1 1
2 2 2

2

23
2

21
2

0

0

0

1
2 1 2

1
2 2

1
2 2

, , , ,

/ 2

/ 2

tX

GCR

tX

GCR

tX

t E e

e f x p q dx

q r x
e p dx

x

p e dx

qe

x x x exp

x exp t x
x

x exp t x
x












  










 




 



 



 









     
            

   



   





    
   

   



    
 
















 

 2

2
2

0

1

0

1
1 2 2

/ 2
x exp t x

dx

re
dx

x

 

   











   
     

    





 

 
Therefore 
 

     

  
 

 

  
11 2

 1 2   1 2
1 2

1 2
1 1 2 2 1 2

1 1 21 2 2 1 2

1

1

GCR

t

exp t exp t
t

exp t
t t

t

qe
t

e

t

p

r
p

t

e

r

q
e










   


  
  


 





 

 

 
  

   


 
       

 
  

   

  

Where 1
2t


  

Hence, the first four moments of X is given by  
 

 
 

1 12
2 2

2 1 1 1

r r
r

E X q p q

  


 
  

    
     

         
   

 
 

 

 

 
 

 

2
2

2 2 2

2 2

1 18
7 2 23

2 1 1 1

1 12
2 22

1 2 1 1

r r
r

E X q p q

r r
r

p q q

  


 
  

  


   
  

    
     

         
   

 
 

      
       

           
     

   
   

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.11 Supitcha Mamuangbon, Kamon Budsaba, Andrei Volodin

E-ISSN: 2224-2880 108 Volume 20, 2021



 

 

 
 

 

3
3

3 3 3

2 3 3 3

2 2 2

1 148
57 2 215 3

2 1 1 1

1 1
2 23

1 1

12
23 3

2 1 1 2

r r
r

E X q p q

r r

p q p q

r
r r

q q

  


 
  

 

   
 

 
 

    
  

    
     

         
   

 
 

      
       

           
    

   
   

  
  

      
  

 
 

 

 

2
2

2

12
2

1 1

18
7 23 3

2 1 1

r

r
r

q

 



 


 
 

  
  

  
  

 
 

  
  

    
  

 
 

 

 
 

 

4
4

4 4 4

2 4 3 4

4 4 3

1 1384
561 2 2105 15
2 1 1 1

1 1
2 215 6

1 1

1
2 12

1 2 1

r r
r

E X q p q

r r

p q p q

r
r

p q q

  


 
  

 

   
 




   
 

    
     

         
   

 
 

      
       

           
    

   
   

  
  

      
  

 
 

   
2 3 3 3

12
2

1

1 12 2
2 212 4

2 1 1 2 1 1

r

r r
r r

q q

 



   
 

     
   

  
  

  
 

 
 

      
       

           
      

   
   

 

    Let  ; , , ,X GCR x p q   with mean  E X   and 

variance  2
V X  . Therefore,  
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3.3 The Characteristic Function 

    The characteristic function of  is  
 

 
 

Proof  Let  be a  , , ,GCR p q   distributed random variable; 
then 

 
Where t  
 

3.4 The Method of Moment Estimation 

    Let  be a sample from  
distribution and  be the sample values. Denote the 
sample noncentral moments as  

  

  

  

  
Then the equations for the Method of Moments are:  

  
  
  
  

where , and  as functions of the 
parameters , and  in section III.B. Unfortunately, the 
Method of Moments equations cannot be solved in closed 
form so, we used MatLab to solve the system of nonlinear 
algebraic equations numerically. We using function 
lsqnonlin to solved the the system of nonlinear algebraic 
equations numerically of the equations for the Method of 
Moments. 

3.5 The Maximum Likelihood Estimation 

Let  f x   be a probability density function (p.d.f.) where 

  is a vector of parameters. Let  1 2, ,..., ~nX X X f x  . The 

likelihood function can be written as:   

   1 2
1

, ,...,
n

n i

i

L x x x f x 
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The maximum Likelihood Estimator (M.L.E.), ̂  is the value 
of   that maximizes  1 2, ,..., nL x x x  

Let  ~ , , ,X GCR p q  , the likelihood equations are: 
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4. Numerical Results 

4.1 Simulation Study 

A simulation study is performed to evaluate the performance 
of MME and MLE estimator for the Generalized Crack 
Random Number that generate by the Composition method. To 
compare two methods of point estimation including with MME 
and MLE, we consider the bias of estimators. The simulations 
were carried out in R statistical software and MATLAB. For 
each point estimation method, we use all combinations of 

100,500,1000,5000n = . And the combination of parameter 

are , 1,2l q =  and , 1 / 3p q = . The results were report to 
investigated the behavior of estimators by using bias. We 
report the results of the estimated parameter for both MME 
and MLE in Table I and report the eatimated bias of  four 
parameters in Table II as follows 

 
Table I. The MME and MLE estimators of ���, , pl q and �q  

 
 

From Table I shows the MME and MLE estimators  
���, , pl q and �q , we can see that the performance of estimators 

of parameter , , p   and q  are good for large sample sizes 

which are 1000 and 5000 but the small sample sizes which are 
100 and 500 are poor for both method MME and MLE.  
 

Table II. The bias of ���, , pl q and �q                

 
 
Table II shows the The bias of ���, , pl q and �q , we can see that 

the method of moment estimators has generally overestimate; 
almost every estimated value provided the negative value 
except λ and q for all combinations. While the MLE provided 
the different results, the parameters λ still overestimate but 
parameter q was underestimate. 

When the sample sizes increase, the simulated bias 
corresponds to the theoretical background as it is a decreasing 
function of sample sizes n. That is, when sample sizes 
increase, the amount of the bias decreases and tends to zero. 
From Table II when we increase sample sizes from 100 to 
5000 in every combination, bias of each estimation is 
decreasing when sample sizes increase.  

5. Discussion 

 This research contains new contributions as the following: 
1. Motivating hopeful practitioners to protect the 

industrial or financial damages before the lifetime 
expired. It may also protect lives safe due to the fact 
that workers who do not know the lifetime of the 
equipment or items that need to be used in the work 
may cause direct and indirect damage. The lifetime 
distribution with the high performance of parameter 
estimate can prevent damage. 

2. Improving statistical knowledge about lifetime 
distribution. 

6. Conclusion 

    This new Crack Lifetime distribution is useful in many areas 
for example Engineering, Physics, Economics and Statistics. In 
this research, we propose a new four parameter family of 
distributions that generalizes the family three parameter Crack 
distribution called Generalized Crack distribution. In addition, 
we investigate the properties including to first four moments, 
parameter estimation by using the maximum likelihood 
estimators and method of moment estimation and evaluate the 
performance of the estimators by using bias. Since in this 
situation, the MLE estimator has the performance better than 
MME so, we recommended to use MLE estimator for the 
Generalized Crack distribution. 
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